Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Nonlinear Dynamics ; 2022.
Article in English | Scopus | ID: covidwho-1959060

ABSTRACT

We analyze a mathematical model of COVID-19 transmission control, which includes the interactions among different groups of the population: vaccinated, susceptible, exposed, infectious, super-spreaders, hospitalized and fatality, based on a system of ordinary differential equations, which describes compartment model of a disease and its treatment. The aim of the model is to predict the development disease under different types of treatment during some fixed time period. We develop a game theoretic approach and a dual dynamic programming method to formulate optimal conditions of the treatment for an administration of a vaccine. Next, we calculate numerically an optimal treatment. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.

2.
Adv Contin Discret Model ; 2022(1): 34, 2022.
Article in English | MEDLINE | ID: covidwho-1793816

ABSTRACT

We investigate the fractional dynamics of a coronavirus mathematical model under a Caputo derivative. The Laplace-Adomian decomposition and Homotopy perturbation techniques are applied to attain the approximate series solutions of the considered system. The existence and uniqueness solution of the system are presented by using the Banach fixed-point theorem. Ulam-Hyers-type stability is investigated for the proposed model. The obtained approximations are compared with numerical simulations of the proposed model as well as associated real data for numerous fractional-orders. The results reveal a good comparison between the numerical simulations versus approximations of the considered model. Further, one can see good agreements are obtained as compared to the classical integer order.

3.
Chaos Solitons Fractals ; 140: 110232, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-728474

ABSTRACT

This paper is devoted to investigation of the fractional order fuzzy dynamical system, in our case, modeling the recent pandemic due to corona virus (COVID-19). The considered model is analyzed for exactness and uniqueness of solution by using fixed point theory approach. We have also provided the numerical solution of the nonlinear dynamical system with the help of some iterative method applying Caputo as well as Attangana-Baleanu and Caputo fractional type derivative. Also, random COVID-19 model described by a system of random differential equations was presented. At the end we have given some numerical approximation to illustrate the proposed method by applying different fractional values corresponding to uncertainty.

SELECTION OF CITATIONS
SEARCH DETAIL